direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×C24⋊C22, C25⋊7C22, C24⋊9C23, C42⋊16C23, C23.58C24, C22.115C25, C22.1182+ (1+4), (C2×Q8)⋊9C23, C22⋊C4⋊11C23, (C2×C4).105C24, (C2×C42)⋊69C22, C22≀C2⋊37C22, (C2×D4).309C23, C4.4D4⋊88C22, (C22×Q8)⋊37C22, C2.46(C2×2+ (1+4)), (C22×C4).1213C23, (C22×D4).432C22, (C2×C22≀C2)⋊28C2, (C2×C4.4D4)⋊57C2, (C2×C22⋊C4)⋊55C22, SmallGroup(128,2258)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 1436 in 704 conjugacy classes, 388 normal (4 characteristic)
C1, C2 [×7], C2 [×12], C4 [×18], C22, C22 [×6], C22 [×92], C2×C4 [×18], C2×C4 [×18], D4 [×36], Q8 [×12], C23, C23 [×12], C23 [×92], C42 [×12], C22⋊C4 [×72], C22×C4 [×9], C2×D4 [×36], C2×D4 [×18], C2×Q8 [×12], C2×Q8 [×6], C24 [×14], C24 [×12], C2×C42 [×3], C2×C22⋊C4 [×18], C22≀C2 [×48], C4.4D4 [×72], C22×D4 [×9], C22×Q8 [×3], C25 [×2], C2×C22≀C2 [×6], C2×C4.4D4 [×9], C24⋊C22 [×16], C2×C24⋊C22
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], C24 [×31], 2+ (1+4) [×6], C25, C24⋊C22 [×4], C2×2+ (1+4) [×3], C2×C24⋊C22
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, fbf=be=eb, gbg=bde, gcg=cd=dc, ce=ec, fcf=cde, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 6)(2 5)(3 16)(4 15)(7 17)(8 18)(9 10)(11 14)(12 13)(19 20)(21 22)(23 30)(24 29)(25 31)(26 32)(27 28)
(1 29)(2 30)(3 4)(5 23)(6 24)(7 17)(8 18)(9 28)(10 27)(11 14)(12 13)(15 16)(19 22)(20 21)(25 26)(31 32)
(1 5)(2 6)(3 31)(4 32)(7 12)(8 11)(9 27)(10 28)(13 17)(14 18)(15 26)(16 25)(19 21)(20 22)(23 29)(24 30)
(1 24)(2 23)(3 26)(4 25)(5 30)(6 29)(7 18)(8 17)(9 21)(10 22)(11 13)(12 14)(15 31)(16 32)(19 27)(20 28)
(1 4)(2 3)(5 32)(6 31)(7 19)(8 20)(9 14)(10 13)(11 22)(12 21)(15 29)(16 30)(17 28)(18 27)(23 26)(24 25)
(1 7)(2 8)(3 20)(4 19)(5 12)(6 11)(9 16)(10 15)(13 29)(14 30)(17 23)(18 24)(21 32)(22 31)(25 27)(26 28)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,6)(2,5)(3,16)(4,15)(7,17)(8,18)(9,10)(11,14)(12,13)(19,20)(21,22)(23,30)(24,29)(25,31)(26,32)(27,28), (1,29)(2,30)(3,4)(5,23)(6,24)(7,17)(8,18)(9,28)(10,27)(11,14)(12,13)(15,16)(19,22)(20,21)(25,26)(31,32), (1,5)(2,6)(3,31)(4,32)(7,12)(8,11)(9,27)(10,28)(13,17)(14,18)(15,26)(16,25)(19,21)(20,22)(23,29)(24,30), (1,24)(2,23)(3,26)(4,25)(5,30)(6,29)(7,18)(8,17)(9,21)(10,22)(11,13)(12,14)(15,31)(16,32)(19,27)(20,28), (1,4)(2,3)(5,32)(6,31)(7,19)(8,20)(9,14)(10,13)(11,22)(12,21)(15,29)(16,30)(17,28)(18,27)(23,26)(24,25), (1,7)(2,8)(3,20)(4,19)(5,12)(6,11)(9,16)(10,15)(13,29)(14,30)(17,23)(18,24)(21,32)(22,31)(25,27)(26,28)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,6)(2,5)(3,16)(4,15)(7,17)(8,18)(9,10)(11,14)(12,13)(19,20)(21,22)(23,30)(24,29)(25,31)(26,32)(27,28), (1,29)(2,30)(3,4)(5,23)(6,24)(7,17)(8,18)(9,28)(10,27)(11,14)(12,13)(15,16)(19,22)(20,21)(25,26)(31,32), (1,5)(2,6)(3,31)(4,32)(7,12)(8,11)(9,27)(10,28)(13,17)(14,18)(15,26)(16,25)(19,21)(20,22)(23,29)(24,30), (1,24)(2,23)(3,26)(4,25)(5,30)(6,29)(7,18)(8,17)(9,21)(10,22)(11,13)(12,14)(15,31)(16,32)(19,27)(20,28), (1,4)(2,3)(5,32)(6,31)(7,19)(8,20)(9,14)(10,13)(11,22)(12,21)(15,29)(16,30)(17,28)(18,27)(23,26)(24,25), (1,7)(2,8)(3,20)(4,19)(5,12)(6,11)(9,16)(10,15)(13,29)(14,30)(17,23)(18,24)(21,32)(22,31)(25,27)(26,28) );
G=PermutationGroup([(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,6),(2,5),(3,16),(4,15),(7,17),(8,18),(9,10),(11,14),(12,13),(19,20),(21,22),(23,30),(24,29),(25,31),(26,32),(27,28)], [(1,29),(2,30),(3,4),(5,23),(6,24),(7,17),(8,18),(9,28),(10,27),(11,14),(12,13),(15,16),(19,22),(20,21),(25,26),(31,32)], [(1,5),(2,6),(3,31),(4,32),(7,12),(8,11),(9,27),(10,28),(13,17),(14,18),(15,26),(16,25),(19,21),(20,22),(23,29),(24,30)], [(1,24),(2,23),(3,26),(4,25),(5,30),(6,29),(7,18),(8,17),(9,21),(10,22),(11,13),(12,14),(15,31),(16,32),(19,27),(20,28)], [(1,4),(2,3),(5,32),(6,31),(7,19),(8,20),(9,14),(10,13),(11,22),(12,21),(15,29),(16,30),(17,28),(18,27),(23,26),(24,25)], [(1,7),(2,8),(3,20),(4,19),(5,12),(6,11),(9,16),(10,15),(13,29),(14,30),(17,23),(18,24),(21,32),(22,31),(25,27),(26,28)])
Matrix representation ►G ⊆ GL12(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | -2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
-1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(12,Integers())| [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1],[1,1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1],[-1,0,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],[-1,0,0,0,0,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4R |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | 2+ (1+4) |
kernel | C2×C24⋊C22 | C2×C22≀C2 | C2×C4.4D4 | C24⋊C22 | C22 |
# reps | 1 | 6 | 9 | 16 | 6 |
In GAP, Magma, Sage, TeX
C_2\times C_2^4\rtimes C_2^2
% in TeX
G:=Group("C2xC2^4:C2^2");
// GroupNames label
G:=SmallGroup(128,2258);
// by ID
G=gap.SmallGroup(128,2258);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,232,1430,1059,2915,570]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*b*f=b*e=e*b,g*b*g=b*d*e,g*c*g=c*d=d*c,c*e=e*c,f*c*f=c*d*e,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations